Abstract

This paper suggests a new variation to the existing symbiotic organisms search (SOS) algorithm developed by simulating three symbiotic strategies of mutualism, commensalism and parasitism used by the organisms. In the revised version called improved SOS (ISOS), the theory of quasi-oppositional based learning is employed during generation of initial population and in the parasitism phase to raise the possibility of getting closer to high-quality solutions. An efficient alternative for parasitism phase is also presented. The two upgraded parasitism strategies avoid the over exploration issue of original parasitism phase that causes unwanted long-time search in the inferior search space as the solution is already refined. To guide the algorithm perform an exhaustive search around the best solution in attempting to further improve the search model of ISOS, a chaotic local search based on the piecewise linear chaotic map is coupled into the proposed algorithm. Twenty-six benchmark functions and three engineering design problems are tested and a contrast with other popular metaheuristics is widely established. Comparative results substantiate the great contribution of proposed ISOS algorithm in solving various optimization problems with superior global search capability and convergence characteristics which render it useful in handling global optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.