Abstract

Block copolymers, comprising polyether and polyolefin segments, are an important and promising category of functional materials. However, the lack of efficient strategies for the construction of polyether-b-polyolefin block copolymers have hindered the development of these materials. Herein, we propose a simple and efficient method to obtain various block copolymers through the copolymerization of epoxides and acrylates via bimetallic synergistic catalysis. The copolymerization of epoxides and acrylates proceeds in a sequence-controlled manner, where the epoxides-involved homo- or copolymerization occurs first, followed by the homopolymerization of acrylates initiated by the alkoxide species from the propagating polymer chain, thus yielding copolymers with a block structure. Notably, the high monomer compatibility of this powerful strategy provides a platform for synthesizing various polyacrylate-based block copolymers comprising polyether, polycarbonate, polythiocarbonate, polyester, and polyurethane segments, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call