Abstract

Today, a predictive controller becomes one of the state of the art in power electronics control techniques. The performance of this powerful control approach will be pushed forward by simplifying the main control criterion and objective function, and decreasing the number of calculations per sampling time. Recently, predictive control has been incorporated in the Z-source inverter (ZSI) family. For example, in quasi ZSI, the inverter capacitor voltage, inductor current, and output load currents are controlled to their setting points through deciding the required state; active or shoot through. The proposed algorithm reduces the number of calculations, where it decides the shoot-through (ST) case without checking the other possible states. The ST case is roughly optimized every two sampling periods. Through the proposed strategy, about 50% improvement in the computational power has been achieved as compared with the previous algorithm. Also, the objective function for the proposed algorithm consists of one weighting factor for the capacitor voltage without involving the inductor current term in the main objective function. The proposed algorithm is investigated with the simulation results based on MATLAB/SIMULINK software. A prototype of qZSI is constructed in the laboratory to obtain the experimental results using the Digital Signal Processor F28335.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call