Abstract
ABSTRACTWe introduce the 2nd-power skewness and kurtosis, which are interesting alternatives to the classical Pearson's skewness and kurtosis, called 3rd-power skewness and 4th-power kurtosis in our terminology. We use the sample 2nd-power skewness and kurtosis to build a powerful test of normality. This test can also be derived as Rao's score test on the asymmetric power distribution, which combines the large range of exponential tail behavior provided by the exponential power distribution family with various levels of asymmetry. We find that our test statistic is asymptotically chi-squared distributed. We also propose a modified test statistic, for which we show numerically that the distribution can be approximated for finite sample sizes with very high precision by a chi-square. Similarly, we propose a directional test based on sample 2nd-power kurtosis only, for the situations where the true distribution is known to be symmetric. Our tests are very similar in spirit to the famous Jarque–Bera test, and as such are also locally optimal. They offer the same nice interpretation, with in addition the gold standard power of the regression and correlation tests. An extensive empirical power analysis is performed, which shows that our tests are among the most powerful normality tests. Our test is implemented in an R package called PoweR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.