Abstract
A power-efficient bridge-to-digital sensing interface is proposed, which also offers immunity against power supply noise. The interface utilizes duty-cycling to reduce the static power consumption of resistive bridge sensors, which are commonly used in implantable, wearable, and internet of things (IoT) applications, such as intracranial pressure (ICP) sensing and blood pressure (BP) monitoring. The proposed interface uses a revised version of the pseudo-pseudo differential (PPD) topology with the ping-pong technique to reduce the complexity of traditional fully-differential counterparts. A proof-of-concept prototype has been fabricated in 0.35-μm CMOS and occupies an active area of 0.48 mm2. It achieves 9.13 effective number of bits (ENOB) at 3.72 kHz sampling rate and improvement of more than 50 dB in the power supply rejection ratio (PSRR) by employing the ping-pong technique. It reduces the power consumption of a 5-kΩ Wheatstone bridge by 99.6% compared to a traditional interface, down to 2.53 μw at 1.8 V supply. The functionality of the system has also been demonstrated in an experimental setup in conjunction with an embedded resistive bridge pressure sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.