Abstract

A new GaN light-emitting diode (LED) structure, which has a 300-nm aluminum-doped zinc oxide transparent current spreading layer epitaxial layer grown on a standard GaN LED epistack used in commercial GaN LED products, shows improved power vs. voltage (P-V) linearity and is suitable for high-data rate visible light communication. Experimentally, a single GaN-based blue LED with a mesa diameter of 150 $\mu\text{m}$ and a maximum optical power of 42 mW demonstrates a 3-Gb/s free-space data transmission speed. The modulation bandwidth reaches 600 MHz under the present experimental setup. The present work proves the practicability of enhancing the LED's free-space data transmission ability through a P-V linearity improvement at the chip level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call