Abstract

The Hamming Quasi-Cyclic (HQC) proposal is a promising candidate in the second round of the NIST Post-Quantum Cryptography Standardization project. It features small public key sizes, precise estimation of its decryption failure rates and contrary to most of the code-based systems, its security does not rely on hiding the structure of an error-correcting code. In this paper, we propose the first power side-channel attack on the Key Encapsulation Mechanism (KEM) version of HQC. Our attack utilizes a power side-channel to build an oracle that outputs whether the BCH decoder in HQC’s decryption algorithm corrects an error for a chosen ciphertext. Based on the decoding algorithm applied in HQC, it is shown how to design queries such that the output of the oracle allows to retrieve a large part of the secret key. The remaining part of the key can then be determined by an algorithm based on linear algebra. It is shown in experiments that less than 10000 measurements are sufficient to successfully mount the attack on the HQC reference implementation running on an ARM Cortex-M4 microcontroller.KeywordsError correctionHQCPost-Quantum CryptographyPower analysisSide-channel analysis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.