Abstract

BackgroundEdge plays a special role in spatial perception and as well as in determining the brightness of a surface within borders. The aim of our study was to measure threshold brightness in different levels of edges thickness.MethodsSteven’s power law for circles modulating in luminance was estimated for 30 subjects (mean age 24 years, SD 3.3, 13 female). Stimuli were presented on the iMac display using the 11-bit graphic board and consisted of two circles of 3° of visual angle, separated by 10°. We tested 7 levels of Michelson contrast: 7, 8, 10, 15, 26, 50, and 100. Three edges filtering were tested (0.3, 0.8, and 1.5° of smoothing). The subjects’ task was to judge the brightness of the edge filtered circle compared with the circle of the hard edge which was considered the modulus and received an arbitrary level of 50, representing the amount of brightness perception. In each trial, the same contrast level was presented in both circles. Five judgments were performed for each contrast level in edge filtering.ResultsWe found an increase in the power law exponent as the increase of the edge filtering (for sigma of 0.3 = 0.43, sigma of 0.8 = 0.73, and sigma 1.5 = 0.97). All power function fitting had high correlation coefficients (r2 = .94, r2 = .95, r2 = .97, respectively to sigma 0.3, 0.8, and 1.5) passing to the model’s adhesion criteria.ConclusionsThere was a progressive distortion on the figure brightness perception as increasing the edge filtering suggesting the control of edges on the polarity of the overall brightness. Also, perceived brightness was increasingly veridical with increased filtering, approaching 1:1 correspondence at 1.5 sigmas.

Highlights

  • Visual contours and surfaces are essential to our spatial perception

  • When comparing the function of the power law’s exponents against the sigma values, which generated the border filtering, we found a welladjusted linear function highlighting the increase of the brightness perception (Fig. 3)

  • We found that the magnitude of the perceptual filling-in for the surface brightness was strongly affected by the edge filtering

Read more

Summary

Introduction

Visual contours and surfaces are essential to our spatial perception In continuation, they are related to the visual segmentation processes which underlie fundamental perceptual constructions like figure-background organization (Ghose & Palmer, 2010). Physiological evidence shows that border-to-surface organization occurs at early stages of visual processes, and that they are related to interactions between cortical areas 17 and 18 (Hung, Ramsden, & Roe, 2007). This shows a large discrepancy in the temporal properties of induction suggesting that the indirect quadrature motion technique and direct brightness matching reveal different brightness induction mechanisms with different temporal characteristics (Blakeslee & McCourt, 2008). The aim of our study was to measure threshold brightness in different levels of edges thickness

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call