Abstract

Precise and comprehensive model development is essential for predicting power network balance and maintaining power system analysis and optimization. The development of big data technologies and measurement systems has introduced new challenges in power grid modeling, simulation, and fault prediction. In-depth analysis of grid data has become vital for maintaining steady and safe operations. Traditional knowledge graphs can structure data in graph form, but identifying topological errors remains a challenge. Meanwhile, Graph Convolutional Networks (GCNs) can be trained on graph data to detect connections between entities, facilitating the identification of potential topological errors. Therefore, this paper proposes a method for power grid topological error identification that combines knowledge graphs with GCNs. The proposed method first constructs a knowledge graph to organize grid data and introduces a new GCN model for deep training, significantly improving the accuracy and robustness of topological error identification compared to traditional GCNs. This method is tested on the IEEE 30-bus system, the IEEE 118-bus system, and a provincial power grid system. The results demonstrate the method’s effectiveness in identifying topological errors, even in scenarios involving branch disconnections and data loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.