Abstract

This paper presents a novel power-driven multiplication instruction-set design method for application-specific instruction-set processors (ASIPs). Based on a dual-and-configurable-multiplier structure, our proposed method devises a multiplication instruction set for low-power ASIPs. Our method exploits the execution sequences of multiplication instructions and effective bit widths of variables to reduce power consumed by redundant multiplication bits while minimizing the multiplication execution time. Experimental results on a set of DSP programs demonstrate that our proposed method achieves significant power reduction (up to 18.53%) and execution time improvement (up to 10.43%) with 18% area overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.