Abstract

In some researches about power assist devices, surface ElectroMyoGraphy (EMG) signals are used to estimate user intentions to move their limbs. These conventional methods mainly focus on estimation of joint torque. However, the devices based on torque estimation are inclined to cause the vibration of users’ posture originating from the waviness of the EMG signals. Focusing on estimation of states related to the joint angle may improve the performance of the power assist devices. This paper proposes a new method that estimates user joint equilibrium point and stiffness separately from the EMG and that amplifies the stiffness while tuning the device joints according to user equilibrium points. To evaluate the method, we constructed a power assist system for the wrist and compared the method with a method based on simple torque estimation during posture maintenance tasks. Our results showed that the proposed method offers a more stable operation at the same assist ratio and proved the effectiveness of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call