Abstract
Visible light communication (VLC) has been a promising field of optical communications which focuses on visible light spectrum that humans can see. Unlike existing studies which mainly discuss point-to-point communication, in this paper, we consider a VLC network, in particular a \(2 \times 2\) system. Our focus is on dealing with interference in this network. The objective is to maximize the signal to interference plus noise ratio (SINR) of one receiver for a given SINR of another receiver. We formulate a power allocation optimization problem to deal with such interference, and introduce dichotomy to solve this optimization problem. Simulation results have twofold meaning: First, \(\mathrm{SINR}_1\) increases with the growth of \(\mathrm{SINR}_2\), which are the SINR of the two receivers, respectively. Second, our proposed scheme outperforms the classical time-division multiple access technique in terms of transmit powers of both light sources when the data rate for these two schemes are set to be identical for each user, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.