Abstract

In order to understand the roles of various physical processes in baroclinic tropical cyclone (TC) motion and the vertical coupling between the upper- and lower-level circulations, a new dynamical framework is advanced. A TC is treated as a positive potential vorticity (PV) anomaly from environmental flows, and its motion is linked to the positive PV tendency. It is shown that a baroclinic TC moves to the region where the azimuthal wavenumber one component of the PV tendency reaches a maximum, but does not necessarily follow the ventilation flow (the asymmetric flow over the TC center). The contributions of individual physical processes to TC motion are equivalent to their contributions to the wavenumber one PV component of the PV tendency. A PV tendency diagnostic approach is described based on this framework. This approach is evaluated with idealized numerical experiments using a realistic hurricane model. The approach is capable of estimating TC propagation with a suitable accuracy and determining fractional contributions of individual physical processes (horizontal and vertical advection, diabatic heating, and friction) to motion. Since the impact of the ventilation flow is also included as a part of the influence of horizontal PV advection, this dynamical framework is more general and particularly useful in understanding the physical mechanisms of baroclinic and diabatic TC motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call