Abstract

AbstractTropical cyclone (TC) track forecasting provides essential guidance for coastal communities. However, track forecast errors still occur, highlighting the need for continued research into error sources. Piecewise potential vorticity (PV) inversion is used systematically to quantitatively diagnose errors in track forecasts in four models during the 2017 Atlantic hurricane season. The deep layer mean steering flow (DLMSF) provides a sufficient proxy for hurricane movement, and DLMSF errors are correlated with TC track errors. Analysis of track forecasts for Hurricanes Harvey, Irma, and Maria reveals that their track errors are attributed to steering errors caused by misrepresentations of specific pressure systems. Harvey's westward track error in the GFS resulted from zonal wind errors from the Continental High, while Irma's northward track error in the SHiELD gfsIC resulted from meridional wind errors in the Bermuda High and Continental High. Maria's southward track error in the IFS resulted from meridional wind errors in the Bermuda High and a misrepresentation of Jose to Maria's northwest. The mean absolute error of the DLMSF shows that the Bermuda High contributed the most to steering flow errors in the cases examined. Our results show that piecewise PV inversion can identify the sources of biases in TC track forecasts. The correction of these biases may lead to improved track forecasts. Quantitative diagnostics presented here provide useful information for future model development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.