Abstract
Recombinant adeno-associated virus serotype 9 (rAAV9) vectors show robust in vivo transduction by a systemic approach. It has been proposed that rAAV9 has enhanced ability to cross the vascular endothelial barriers. However, the scientific basis of systemic administration of rAAV9 and its transduction mechanisms have not been fully established. Here, we show indirect evidence suggesting that capillary walls still remain as a significant barrier to rAAV9 in cardiac transduction but not so in hepatic transduction in mice, and the distinctively delayed blood clearance of rAAV9 plays an important role in overcoming this barrier, contributing to robust cardiac transduction. We find that transvascular transport of rAAV9 in the heart is a capacity-limited slow process and occurs in the absence of caveolin-1, the major component of caveolae that mediate endothelial transcytosis. In addition, a reverse genetic study identifies the outer region of the icosahedral threefold capsid protrusions as a potential culprit for rAAV9's delayed blood clearance. These results support a model in which the delayed blood clearance of rAAV9 sustains the capacity-limited slow transvascular vector transport and plays a role in mediating robust cardiac transduction, and provide important implications in AAV capsid engineering to create new rAAV variants with more desirable properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.