Abstract

Objective: 27-hydroxycholesterol is the product of the mitochondrial cytochrome P450 sterol 27-hydroxylase, a key enzyme in cholesterol metabolism present in most tissues of the body. 27-hydroxycholesterol increases in abundance with progression of human atherosclerotic lesions, therefore the aim of this study was to determine the pattern of sterol 27-hydroxylase gene expression in normal and diseased arteries and to identify the cell types responsible for its expression. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) analysis and in situ hybridisation, utilising a sterol 27-hydroxylase cDNA probe, and immunohistochemistry, utilising an antibody to sterol 27-hydroxylase, together with an antibody to smooth muscle cell α-actin and an antibody to CD68, a marker for macrophages, were used to study expression of 27-hydroxylase in arterial specimens. In addition, RT-PCR was used to study expression of 27-hydroxylase in cultured macrophages and smooth muscle cells. Results: Semi-quantitative RT-PCR analysis of normal and atherosclerotic human aortas showed that 27-hydroxylase is constitutively expressed in the normal artery wall, and is substantially up-regulated in atherosclerosis. RT-PCR analysis of 27-hydroxylase expression in vitro demonstrated that macrophages constitutively express high levels throughout their differentiation in culture whilst de-differentiated vascular smooth muscle cells express very low levels. In situ hybridisation revealed that in normal artery and fatty streaks, expression of mRNA for 27-hydroxylase was low in the media, but higher in intimal smooth muscle cells. The macrophages of fatty streaks expressed low or undetectable levels of 27-hydroxylase. However in advanced lesions the highest expression of 27-hydroxylase was detectable in macrophages. Immunohistochemistry demonstrated that high levels of 27-hydroxylase protein occurred in macrophages near the shoulder region of plaques, at the edge of the lipid core. Conclusions: 27-hydroxylase may constitute a protective mechanism for removing cholesterol from macrophages and smooth muscle cells. Genetic heterogeneity resulting in differences in sterol 27-hydroxylase activity between individuals may affect their ability to deal with accumulated cholesterol in the arterial intima, and hence their relative degree of predisposition to atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.