Abstract

Here we proposed a method for peptide purity analysis using gas chromatography-isotope dilution infrared spectroscopy. The principle and feasibility of the proposed measurement method were investigated. The derivatization, separation, and infrared detection conditions for amino acids were optimized, and the performance of the method was investigated. Then, the proposed method was used for assessment of [Glu1]-fibrinopeptide B purity, and the results were compared with those obtained by high performance liquid chromatography-isotope dilution mass spectrometry. The average purity of six sub-samples using the proposed method was (0.755 ± 0.017)g/g, which agreed well with that obtained by isotope dilution mass spectrometry (0.754 ± 0.012) g/g. The repeatability of the proposed method was 2.2%, which was similar to that of isotope dilution mass spectrometry (1.7%). The proposed method has a similar principle and had similar accuracy, precision, and linearity to isotope dilution mass spectrometry; however, the developed method had higher limit of detection (LOD) and limit of quantitation (LOQ) values because of the low sensitivity of infrared detection. The results were also Système International d'Unités (SI) traceable. The developed method has the advantage of lower cost compared with isotope dilution mass spectrometry because only one isotope-labeled atom in an analog is required, and several infrared spectra can be extracted, averaged, and used for an amino acid calculation during one run, potentially leading to higher accuracy. This method could be easily expanded to the accurate quantitation of other organic compounds, including proteins. It is expected that the proposed method will be widely used in chemical and biological measurements as a new primary method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.