Abstract

BackgroundSinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study. UGT2B10 is a phase II drug metabolizing enzyme involved in the N-glucuronidation of tertiary amine containing drugs.MethodsTo shed light on the functionality of UGT2B10 enzyme in the metabolism of drugs used in pediatric HSCT setting, we performed in silico screening against custom based library of putative ligands. First, a list of potential substrates for in silico analysis was prepared using a systematic consensus-based strategy. The list comprised of drugs and their metabolites used in pediatric HSCT setting. The three-dimensional structure of UGT2B10 was not available from the Research Collaboratory Structural Bioinformatics - Protein Data Bank (RCSB - PDB) repository and thus we predicted the first human UGT2B10 3D model by using multiple template homology modeling with MODELLER Version 9.2 and molecular docking calculations with AutoDock Vina Version 1.2 were implemented to quantify the estimated binding affinity between selected putative substrates or ligands and UGT2B10. Finally, we performed molecular dynamics simulations using GROMACS Version 5.1.4 to confirm the potential UGT2B10 ligands prioritized after molecular docking (exhibiting negative free binding energy).ResultsFour potential ligands for UGT2B10 namely acetaminophen, lorazepam, mycophenolic acid and voriconazole n-oxide intermediate were identified. Other metabolites of voriconazole satisfied the criteria of being possible ligands of UGT2B10. Except for bilirubin and 4-Hydroxy Voriconazole, all the ligands (particularly voriconazole and hydroxy voriconazole) are oriented in substrate binding site close to the co-factor UDP (mean ± SD; 0.72 ± 0.33 nm). Further in vitro screening of the putative ligands prioritized by in silico pipeline is warranted to understand the nature of the ligands either as inhibitors or substrates of UGT2B10.ConclusionsThese results may indicate the clinical and pharmacological relevance UGT2B10 in pediatric HSCT setting. With this systematic computational methodology, we provide a rational-, time-, and cost-effective way to identify and prioritize the interesting putative substrates or inhibitors of UGT2B10 for further testing in in vitro experiments.

Highlights

  • Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients

  • The latter is located in 3′-untranslated regions (3′-Untranslated region (UTR)) of UDP-glucuronosyl transferase 2B10 (UGT2B10) which might affect its gene expression by regulating the messenger RNA-related processes, such as localization and stability of mRNA, or by directly modulating protein conformation inducing a potential change in the enzyme activity [11]

  • Generation of the three-dimensional model of UGT2B10 The UGT2B10 protein sequence comprised of 460 amino-acid residues without the signal peptide, transmembrane region and 8 residues surrounding transmembrane region. 250 potential templates or structural neighbors, based on Hidden-Markov model (HMM) profile similarities, were retrieved from HHpred [26, 27] and filtered to select four suitable structural templates

Read more

Summary

Introduction

Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment-related factors, such as high-intensity conditioning regimens comprising of two or more alkylating agents including busulfan, or the co-administration of potentially hepatotoxic prophylactic drugs such as methotrexate and cyclosporine can contribute to the increased risk of developing SOS [4] Exposure to these hepatotoxic injuries elicits a more permeable endothelium, permitting the entry of blood cells in the Disse space. Multivariate analysis performed in a replication cohort confirmed the important implication of 2 of those SNPs in the occurrence of SOS: KIAA1715 single nucleotide polymorphism (SNP) (rs16931326), coding for lunapark protein, involved in the formation of the endoplasmic reticulum and a potential drug metabolizing enzyme gene UGT2B10 SNP (rs17146905) [10]. The role of UGT2B10 in the metabolism of drugs used in the HSCT setting is not clearly known

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call