Abstract
Tropical cyclone rapid intensification events often cause destructive hurricane landfalls because they are associated with the strongest storms and forecasts with the highest errors. Multi-decade observational datasets of tropical cyclone behavior have recently enabled documentation of upward trends in tropical cyclone rapid intensification in several basins. However, a robust anthropogenic signal in global intensification trends and the physical drivers of intensification trends have yet to be identified. To address these knowledge gaps, here we compare the observed trends in intensification and tropical cyclone environmental parameters to simulated natural variability in a high-resolution global climate model. In multiple basins and the global dataset, we detect a significant increase in intensification rates with a positive contribution from anthropogenic forcing. Furthermore, thermodynamic environments around tropical cyclones have become more favorable for intensification, and climate models show anthropogenic warming has significantly increased the probability of these changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.