Abstract

AbstractScientists are more and more interested in biodegradable materials owing to their environmental advantage. We investigated viscoelastic properties of a newly developed biomaterial made from epoxidized soybean oil (ESO). ESO cross‐linked by triethylene glycol diamine exhibited viscoelastic solid properties. The storage modulus (G′) was 2×104 Pa over four frequency decades. The phase angles were 14–18°. Stress relaxation measurements showed that there was no relaxation up to 500 s. From the plateau modulus we estimated that the M.W. of this cross‐linked soybean oil was on the order of 105. The composites of cross‐linked ESO with three different fibers had 50 times higher elasticity (G′) than those without fiber. Phase shifts were the same as those of cross‐linked oil without fibers, but the linear range of rheological properties was much narrower than that of the material without fibers. All these results indicated that this new biopolymer made from soybean oil exhibited strong viscoelastic solid properties similar to synthetic rubbers. These rheological properties implied that this biomaterial has high potential to replace some of the synthetic rubber and/or plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.