Abstract

AbstractA potassium diboryllithate (B2LiK) was synthesized and structurally characterized. DFT calculations, including NPA and AIM analyses of B2LiK, revealed ionic interactions between the two bridging boryl anions and Li+ and K+. Upon standing in benzene, B2LiK deprotonated the solvent to form a hydroborane and a phenylborane. On the basis of DFT calculations, a detailed reaction mechanism, involving deprotonation and hydride/phenyl exchange processes, is proposed. An NBO analysis of the transition state for the deprotonation of benzene suggests that the deprotonation should be induced by the coordination of benzene to the K+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.