Abstract

Signcryption is an important cryptographic scheme which is used for both confidentiality and unforgeability. It has many interesting practical applications. Enormous growth of quantum computers makes a warning to the existing classical signcryption schemes due to Shor’s algorithm. As a result, designing signcryption schemes, which can withstand quantum attack, is an interesting direction of research. Isogeny based cryptography (IBC) is an ideal post-quantum candidate that can be employed to build a quantum computer immune signcryption scheme. Less communication cost and a smaller public key is the main advantage of IBC compared to other post quantum cryptographic branches. In this paper, we design the first signcryption employing IBC. Our scheme is relying on three hard problems: Commutative Supersingular Isogeny Decisional Diffie–Hellman (CSSIDDH), Group Action Inverse Problem (GAIP) and Commutative Supersingular Isogeny Knowledge of Exponent (CSSIKOE). It achieves IND − CCA and EUF − CMA security. Ciphertext size in this scheme turns out to be 16622.05 bytes for p128 and 12757.45 bytes for p256 to achieve NIST-1 level of security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.