Abstract
Permanent breast seed implant (PBSI) brachytherapy is a promising treatment that has the potential to be widely utilized with increased standardization, optimization, and robustness. Excellent early efficacy and very high patient acceptance were reported, however, to further evaluate and improve planning strategies, a framework to quantify plan robustness to implant uncertainties is necessary. In this study, we aim to quantify clinical seed displacement using an automated algorithm and develop and validate a PBSI post-implant dosimetry simulation framework to evaluate PBSI plan robustness to implant uncertainties. Clinical PBSI seed displacements were quantified for 63 consecutive patients. A PBSI simulator was developed in Matlab (2020) by resampling clinical seed displacements and computing a range of possible post-implant dosimetry outcomes under various seed displacement scenarios. Simulations were performed retrospectively on 63 previous clinical plans to evaluate plan robustness to seed displacement. Mean seed displacement for the whole cohort was 10 ± 6 mm. A clinical seed displacement database was established and a user interface was developed for the simulation framework. For all clinical plans, the median (range) value of simulated median ETV V90 in various seed displacement scenarios was 97.8% (87.5-100%). A PBSI postimplant dosimetry simulation framework was developed and validated. Simulation results showed that the current PTV planning margin is sufficient to provide adequate postimplant dose coverage of ETV. This simulator can be used to evaluate plan robustness to seed displacement and will facilitate future research in improving PBSI planning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.