Abstract

This paper proposes a method for rigorously analyzing the sign-change structure of solutions of elliptic partial differential equations subject to one of the three types of homogeneous boundary conditions: Dirichlet, Neumann, and mixed. Given explicitly estimated error bounds between an exact solution u and a numerically computed approximate solution {hat{u}}, we evaluate the number of sign-changes of u (the number of nodal domains) and determine the location of zero level-sets of u (the location of the nodal line). We apply this method to the Dirichlet problem of the Allen–Cahn equation. The nodal line of solutions of this equation represents the interface between two coexisting phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.