Abstract

<abstract><p>A system of singularly perturbed initial value problems with weak constrained conditions on the coefficients is considered. First the system of second-order singularly perturbed problems is transformed into a system of first-order singularly perturbed problems with integral terms, which facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method with the use of interpolating quadrature rules is utilized to approximate the transformed system. Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence behavior of second-order for the scheme, which improves the previous results and achieves the optimal convergence order under the given discrete scheme.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call