Abstract
In this article, we develop and analyze a new recovery‐based a posteriori error estimator for the discontinuous Galerkin (DG) method for nonlinear hyperbolic conservation laws on Cartesian grids, when the upwind flux is used. We prove, under some suitable initial and boundary discretizations, that the ‐norm of the solution is of order , when tensor product polynomials of degree at most are used. We further propose a very simple derivative recovery formula which gives a superconvergent approximation to the directional derivative. The order of convergence is showed to be . We use our derivative recovery result to develop a robust recovery‐type a posteriori error estimator for the directional derivative approximation which is based on an enhanced recovery technique. The proposed error estimators of the recovery‐type are easy to implement, computationally simple, asymptotically exact, and are useful in adaptive computations. Finally, we show that the proposed recovery‐type a posteriori error estimates, at a fixed time, converge to the true errors in the ‐norm under mesh refinement. The order of convergence is proved to be . Our theoretical results are valid for piecewise polynomials of degree and under the condition that each component, , of the flux function possesses a uniform positive lower bound. Several numerical examples are provided to support our theoretical results and to show the effectiveness of our recovery‐based a posteriori error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1224–1265, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.