Abstract
Consider the solution of one-dimensional linear initial-boundary value problems by a finite element method of lines using a piecewiseP th -degree polynomial basis. A posteriori estimates of the discretization error are obtained as the solutions of either local parabolic or local elliptic finite element problems using piecewise polynomial corrections of degreep+1 that vanish at element ends. Error estimates computed in this manner are shown to converge in energy under mesh refinement to the exact finite element discretization error. Computational results indicate that the error estimates are robust over a wide range of mesh spacings and polynomial degrees and are, furthermore, applicable in situations that are not supported by the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.