Abstract

We introduce quantitative and robust tools to control the numerical accuracy in simulations performed using the Multiscale Finite Element Method (MsFEM). First, we propose a guaranteed and fully computable a posteriori error estimate for the global error measured in the energy norm. It is based on dual analysis and the Constitutive Relation Error (CRE) concept, with recovery of equilibrated fluxes from the approximate MsFEM solution. Second, the estimate is split into several indicators, associated to the various MsFEM error sources, in order to drive an adaptive procedure. The overall strategy thus enables to automatically identify an appropriate trade-off between accuracy and computational cost in the MsFEM numerical simulations. Furthermore, the strategy is compatible with the offline/online paradigm of MsFEM. The performances of our approach are demonstrated in several numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.