Abstract

We study the backward Euler method with variable time steps for abstract evolution equations in Hilbert spaces. Exploiting convexity of the underlying potential or the angle-bounded condition, thereby assuming no further regularity, we derive novel a posteriori estimates of the discretization error in terms of computable quantities related to the amount of energy dissipation or monotonicity residual. These estimators depend solely on the discrete solution and data and impose no constraints between consecutive time steps. We also prove that they converge to zero with an optimal rate with respect to the regularity of the solution. We apply the abstract results to a number of concrete, strongly nonlinear problems of parabolic type with degenerate or singular character. © 2000 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.