Abstract
Electroencephalography is a non-invasive technique for detecting brain activity from the measurement of the electric potential on the head surface. In mathematical terms, it reduces to an inverse problem in which the goal is to determine the source that has generated the electric field from measurements of boundary values of the electric potential. Since for reasonable models the time-variation of the electric and magnetic fields can be disregarded, the mathematical modeling of the corresponding forward problem leads to an electrostatics problem with a current dipole source. This is a singular problem, since the current dipole model involves first-order derivatives of a Dirac delta measure. Its solution lies in Lp for 1≤p<3/2 in three dimensional domains and 1≤p<2 in the two dimensional case.We consider the numerical approximation of the forward problem by means of standard piecewise linear continuous finite elements. We prove a priori error estimates in the Lp norm. Then, we propose a residual-type a posteriori error estimator. We prove that it is reliable and efficient; namely, it yields global upper and local lower bounds for the corresponding norms of the error. Finally, we use this estimator to guide an adaptive procedure, which is experimentally shown to lead to an optimal order of convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.