Abstract

Abstract : The primary purpose of this paper is to compare the accuracy and performance of two numerical approaches to solving systems of partial differential equations. These equations are posed on adjoining domains sharing boundary conditions on a common boundary interface in the important case when the meshes used on the two domains are non-matching across the interface. The first widely used approach is based on a finite volume method employing ad hoc projections to relate approximations on the two domains across the interface. The second approach uses the mathematically-founded mortar mixed finite element method. To quantify the performance, we use a goal-oriented a-posteriori error estimate that quantifies various aspects of discretization error to the overall error. While the performance difference may be not a surprise in some cases, we believe that there is a perception in part of the scientific community concerned with multiphysics systems that if the solution is smooth near the interface, then there is little effect from varying the coupling technique. We find that, on the contrary, the error associated with ad hoc coupling approaches may be large in practical situations. Moreover, we also show that mortar methods can be used with black box component solves, thus permitting an efficient and practical implementation also within legacy codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.