Abstract

Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error estimates. In this work we focus on developing a posteriori error estimates in which the computational error is bounded by some computable functional of the discrete solution and problem data. More precisely, we prove a posteriori error estimates of a residual type for Arnold–Falk–Winther mixed finite element methods for Hodge–de Rham–Laplace problems. While a number of previous works consider a posteriori error estimation for Maxwell’s equations and mixed formulations of the scalar Laplacian, the approach we take is distinguished by a unified treatment of the various Hodge–Laplace problems arising in the de Rham complex, consistent use of the language and analytical framework of differential forms, and the development of a posteriori error estimates for harmonic forms and the effects of their approximation on the resulting numerical method for the Hodge–Laplacian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.