Abstract

This paper considers a posteriori error estimates by averaged gradients in second order parabolic problems. Fully discrete schemes are treated. The theory from the elliptic case as to when such estimates are asymptotically exact, on an element, is carried over to the error on an element at a given time. The basic principle is that the elliptic theory can be extended to the parabolic problems provided the time-step error is smaller than the space-discretization error. Numerical illustrations confirming the theoretical results are given. Our results are not practical in the sense that various constants can not be estimated realistically. They are conceptual in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.