Abstract
The Galerkin boundary node method (GBNM) is a boundary only meshless method that combines variational formulations of boundary integral equations with the moving least-squares approximations. This paper presents the mathematical derivation of a posteriori error estimates and adaptive refinement procedures for the GBNM for 3D potential problems. Two types of error estimators are developed in detail. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two successive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the GBNM solution itself and its L2-orthogonal projection. The reliability and efficiency of both types of error estimators is established. That is, these error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization technique is introduced to accommodate the non-local property of integral operators for the needed local and computable a posteriori error indicators. Convergence analysis results of corresponding adaptive meshless procedures are also given. Numerical examples with high singularities illustrate the theoretical results and show that the proposed adaptive procedures are simple, effective and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.