Abstract
The paper discusses how to verify the quality of approximate solutions to partial differential equations constructed by deep neural networks. A posterior error estimates of the functional type, that have been developed for a wide range of boundary value problems, are used to solve this problem. It is shown, that they allow one to construct guaranteed two-sided estimates of global errors and get distribution of local errors over the domain. Results of numerical experiments are presented for elliptic boundary value problems. They show that the estimates provide much more reliable information on the quality of approximate solutions generated by networks than the loss function, which is used as a quality criterion in the Deep Galerkin method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.