Abstract

We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly convergent global reduced-basis approximations - (Galerkin) projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage - in which, given a new parameter value, we calculate the output of interest and associated error bound - depends only on N (typically very small) and the parametric complexity of the problem. In this paper we develop new a posteriori error estimation procedures for noncoercive linear, and certain nonlinear, problems that yield rigorous and sharp error statements for all N. We consider three particular examples: the Helmholtz (reduced-wave) equation; a cubically nonlinear Poisson equation; and Burgers equation - a model for incompressible Navier-Stokes. The Helmholtz (and Burgers) example introduce our new lower bound constructions for the requisite inf-sup (singular value) stability factor; the cubic nonlin-earity exercises symmetry factorization procedures necessary for treatment of high-order Galerkin summations in the (say) residual dual-norm calculation; and the Burgers equation illustrates our accommodation of potentially multiple solution branches in our a posteriori error statement. Numerical results are presented that demonstrate the rigor, sharpness, and efficiency of our proposed error bounds, and the application of these bounds to adaptive (optimal) approximation. © 2003 by the American Institute of Aeronautics and Astronautics, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.