Abstract

We study a posteriori error analysis for the space-time discretizations of linear parabolic integro-differential equation in a bounded convex polygonal or polyhedral domain. The piecewise linear finite element spaces are used for the space discretization, whereas the time discretization is based on the Crank–Nicolson method. The Ritz–Volterra reconstruction operator (IMA J Numer Anal 35:341–371, 2015), a generalization of elliptic reconstruction operator (SIAM J Numer Anal 41:1585–1594, 2003), is used in a crucial way to obtain optimal rate of convergence in space. Moreover, a quadratic (in time) space-time reconstruction operator is introduced to establish second order convergence in time. The proposed method uses nested finite element spaces and the standard energy technique to obtain optimal order error estimator in the \(L^{\infty }(L^2)\)-norm. Numerical experiments are performed to validate the optimality of the error estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.