Abstract

In an earlier work of us, a new mixed finite element scheme was developed for the Boussinesq model describing natural convection. Our methodology consisted of a fixed-point strategy for the variational problem that resulted after introducing a modified pseudostress tensor and the normal component of the temperature gradient as auxiliary unknowns in the corresponding Navier-Stokes and advection-diffusion equations defining the model, respectively, along with the incorporation of parameterized redundant Galerkin terms. The well-posedness of both the continuous and discrete settings, the convergence of the associated Galerkin scheme, as well as a priori error estimates of optimal order were stated there. In this work we complement the numerical analysis of our aforementioned augmented mixed-primal method by carrying out a corresponding a posteriori error estimation in two and three dimensions. Standard arguments relying on duality techniques, and suitable Helmholtz decompositions are used to derive a global error indicator and to show its reliability. A globally efficiency property with respect to the natural norm is further proved via usual localization techniques of bubble functions. Finally, an adaptive algorithm based on a reliable, fully local and computable a posteriori error estimator induced by the aforementioned one is proposed, and its performance and effectiveness are illustrated through a few numerical examples in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.