Abstract

This paper is concerned with residual type a posteriori error estimates of fully discrete finite element approximations for parabolic optimal control problems with measure data in a bounded convex domain. Two kinds of control problems, namely measure data in space and measure data in time, are considered and analyzed. We use continuous piecewise linear functions for approximations of the state and co-state variables and piecewise constant functions for the control variable. The time discretization is based on the backward Euler implicit scheme. We derive a posteriori error estimates for the state, co-state and control variables in the L2(0,T;L2(Ω))-norm. Finally, numerical tests are presented to illustrate the performance of the estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.