Abstract
We consider elliptic and parabolic variational equations and inequalities governed by integro-differential operators of order $${2s \in (0,2]}$$. Our main motivation is the pricing of European or American options under Levy processes, in particular pure jump processes or jump diffusion processes with tempered stable processes. The problem is discretized using piecewise linear finite elements in space and the implicit Euler method in time. We construct a residual-type a posteriori error estimator which gives a computable upper bound for the actual error in H s -norm. The estimator is localized in the sense that the residuals are restricted to the discrete non-contact region. Numerical experiments illustrate the accuracy of the space and time estimators, and show that they can be used to measure local errors and drive adaptive algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.