Abstract

We investigate an adaptive mesh strategy for the conforming virtual element method (VEM) of the Stokes equations proposed in Manzini and Mazzia (2022). The VEM generalizes the finite element approach to polygonal and polyehedral meshes in the framework of Galerkin approximation. The scheme of Manzini and Mazzia (2022) is inf-sup stable, converges optimally in the L2 and energy norm for all polynomial orders k≥1, and the Stokes velocity is weakly divergence-free at the machine precision level. Our adaptive mesh strategy is based on a suitable residual-based a posteriori indicator. A posteriori analysis shows that such an indicator is theoretically efficient and reliable. Our numerical experiments show that it can be an efficient tool for solving scientific and engineering problems by applying it to a set of representative situations, including the case of a weakly singular solution as that of the “L-shape” domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.