Abstract

This paper presents an a posteriori error analysis for the discontinuous in time space–time scheme proposed by Jamet for the heat equation in multi-dimensional, non-cylindrical domains Jamet (SIAM J. Numer. Anal. 15 (1978) 913–928). Using a Clément-type interpolant, we prove abstract a posteriori error bounds for the numerical error. Furthermore, in the case of two-dimensional spatial domains we transform the problem into an equivalent one, of parabolic type, with space-time dependent coefficients but posed on a cylindrical domain. We formulate a discontinuous in time space–time scheme and prove a posteriori error bounds of optimal order. The a priori estimates of Evans (American Mathematical Society (1998)) for general parabolic initial and boundary value problems are used in the derivation of the upper bound. Our lower bound coincides with that of Picasso (Comput. Meth. Appl. Mech. Eng. 167 (1998) 223–237), proposed for adaptive, Runge-Kutta finite element methods for linear parabolic problems. Our theoretical results are verified by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.