Abstract

this paper, we perform an a posteriori error analysis of a multiscale operator decomposition finite element method for the solution of a system of coupled elliptic problems. The goal is to compute accurate error estimates that account for the effects arising from multiscale discretization via operator decomposition. Our approach to error estimation is based on a well-known a posteriori analysis involving variational analysis, residuals, and the generalized Green's function. Our method utilizes adjoint problems to deal with several new features arising from the multiscale operator decomposition. In part I of this paper, we focus on the propagation of errors arising from the solution of one component to another and the transfer of information between different representations of solution components. We also devise an adaptive discretization strategy based on the error estimates that specifically controls the effects arising from operator decomposition. In part II of this paper, we address issues related to the iterative solution of a fully coupled nonlinear system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.