Abstract

Multi-frame image super-resolution (SR) has been intensively studied in recent years, aiming at reconstructing high-resolution images from several degraded ones (e.g., shift, blurred, aliased, and noisy). In the literature, one of the most popular SR frameworks is the maximum a posteriori model, where a spatially homogeneous image prior and manually adjusted regularization parameter are commonly used for the entire high-resolution image, thus ignoring local spatially adaptive properties of natural images. In this paper, a posterior mean approach is proposed for spatially adaptive multi-frame image super-resolution. First, a flexible Laplacian prior is proposed incorporating both the gradient and Hessian information of images, not only able to better preserve image structures, e.g., edge, texture, but also to suppress staircase effects in the flat regions. In the subsequent, a fully Bayesian SR framework is formulated, wherein the variational Bayesian method is utilized to simultaneously estimate the high-resolution image and unknown hyper-parameters for the image prior and noise. The final experimental results show that the proposed approach is highly competitive against existing algorithms, producing a super-resolved image with higher peak signal-to-noise ratio and better visual perception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.