Abstract
To interprete the importance of clinical features and genotypes for warfarin daily dose prediction, we developed a post-hoc interpretable framework based on an ensemble predictive model. This framework includes permutation importance for global interpretation and local interpretable model-agnostic explanation (LIME) and shapley additive explanations (SHAP) for local explanation. The permutation importance globally ranks the importance of features on the whole data set. This can guide us to build a predictive model with less variables and the complexity of final predictive model can be reduced. LIME and SHAP together explain how the predictive model give the predicted dosage for specific samples. This help clinicians prescribe accurate doses to patients using more effective clinical variables. Results showed that both the permutation importance and SHAP demonstrated that VKORC1, age, serum creatinine (SCr), left atrium (LA) size, CYP2C9 and weight were the most important features on the whole data set. In specific samples, both SHAP and LIME discovered that in Chinese patients, wild-type VKORC1-AA, mutant-type CYP2C9*3, age over 60, abnormal LA size, SCr within the normal range, and using amiodarone definitely required dosage reduction, whereas mutant-type VKORC1-AG/GG, small age, SCr out of normal range, normal LA size, diabetes and heavy weight required dosage enhancementt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.