Abstract

PurposeHLD200 is the first evening-dosed, delayed-release and extended-release methylphenidate (DR/ER-MPH) designed to delay initial release of MPH and provide treatment effects throughout the day and into the evening for individuals with attention-deficit/hyperactivity disorder (ADHD). Because DR/ER-MPH is uniquely absorbed in the colon, it cannot be substituted for other ADHD medications on a milligram-per-milligram basis. To provide clinicians with a target dose range for DR/ER-MPH when transitioning patients from a prior ADHD medication, dose conversion ratios (DCRs) between prior medication doses and optimized doses of DR/ER-MPH were determined post hoc from a pivotal Phase III study of children (aged 6–12 years) with ADHD. MethodsDR/ER-MPH doses were optimized over a 6-week open-label period. DCRs were calculated between optimized doses of DR/ER-MPH at week 6 and prior stable doses of ADHD medication. FindingsMean DCRs ranged from 1.8 to 4.3 for optimized DR/ER-MPH dose versus previous stable dose for individuals taking an extended-release stimulant monotherapy. DCRs for those taking an immediate-release stimulant monotherapy ranged from 4.7 to 6.0. ImplicationsIn a Phase III trial of children with ADHD, optimized doses of DR/ER-MPH were higher than doses of prior ADHD medications, but the adverse event profile was consistent with that of other MPHs. Higher DCRs compared with those predicted by bioavailability differences are consistent with a predicted dose-dependent duration of effect for DR/ER-MPH: with increasing doses, absorption is extended but with an attenuated increase in Cmax compared with MPH formulations absorbed in the upper bowel. These data may help guide clinicians to optimize DR/ER-MPH doses. ClinicalTrials.gov identifier: NCT02493777.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call