Abstract
Persistent neurogenesis in the adult brain of both vertebrates and invertebrates was previously considered to be driven by self-renewing neuronal stem cells of ectodermal origin. Recent findings in an invertebrate model challenge this view and instead provide evidence for a recruitment of neuronal precursors from a non-neuronal source. In the brain of adult crayfish, a neurogenic niche was identified that contributes progeny to the adult central olfactory pathway. The niche may function in attracting cells from the hemolymph and transforming them into cells with a neuronal fate. This finding implies that the first-generation neuronal precursors located in the crayfish neurogenic niche are not self-renewing. Evidence is summarized in support of a critical re-evaluation of long-term self-renewal of mammalian neuronal stem cells. Latest findings suggest that a tight link between the immune system and the system driving adult neurogenesis may not only exist in the crayfish but also in mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.