Abstract

ABSTRACTHeterobaric leaves are characterized by transparent regions in their lamina, due to the occurrence of bundle sheath extensions. Fused silica fibre‐optic microprobes were used to monitor light gradients and part of the spectral regime along the bundle sheath extensions, as well as along the mesophyll in the heterobaric leaves of two representative plants, one mesomorphic (Vitis viniferaL.) and one xeromorphic (Quercus cocciferaL.). It was found that the attenuation of collimated visible light by the bundle sheath extensions of both plants was weaker than the attenuation by the photosynthetic parenchyma layers. However, only a small portion of the amount of light that strikes the leaf surface is transmitted through these structures. The adaxial epidermis covering the bundle sheath extensions, as well as the mesophyll, afforded similar effective protection against UV radiation in both tissues. The relative amount of the forward‐scattered visible light inside the bundle sheath extensions approached that detected by the microprobe at the adaxial illuminated leaf surface. Moreover, light transmitted through the bundle sheath extensions was enriched mainly in the blue and red regions, compared to light transmitted through the photosynthetic tissue. The time course of photosynthetic starch formation in the leaves ofV. viniferadetected by iodine staining showed that the accumulation of starch during the first minutes of illumination was high within photosynthetic parenchyma cells adjacent to the bundle sheath extensions. The data showed that bundle sheath extensions act as transparent ‘windows’ which enrich the neighbouring mesophyll areas with high levels of photosynthetically active radiation (400–700 nm). The phenomenon was more pronounced in the thick and compact sclerophyllous leaves ofQ. cocciferaby virtue of the greater abundance of bundle sheath extensions as compared to that inV. vinifera.The enhancement of the light micro‐environment within the deep internal layers of the mesophyll may affect the photosynthetic performance of such leaves, giving adaptive advantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call