Abstract

The expansion in multipoles Jℓ, ℓ = 2, … of the gravitational potential of a rotating body affects the orbital motion of a test particle orbiting it with long-term perturbations both at a classical and at a relativistic level. In this preliminary sensitivity analysis, we show that, for the first time, the J2c−2 effects could be measured by the ongoing Juno mission in the gravitational field of Jupiter during its nearly yearlong science phase (10 November 2016–5 October 2017), thanks to its high eccentricity (e = 0.947) and to the huge oblateness of Jupiter (J2 = 1.47 × 10−2). The semimajor axis a and the perijove ω of Juno are expected to be shifted by Δa ≲ 700–900 m and Δω ≲ 50–60 milliarcseconds (mas), respectively, over 1–2 yr. A numerical analysis shows also that the expected J2c−2 range-rate signal for Juno should be as large as ≈280 microns per second (μm s−1) during a typical 6 h pass at its closest approach. Independent analyses previously performed by other researchers about the measurability of the Lense–Thirring effect showed that the radio science apparatus of Juno should reach an accuracy in Doppler range-rate measurements of ≈1–5 μm s−1 over such passes. The range-rate signature of the classical even zonal perturbations is different from the first post-Newtonian (1PN) one. Thus, further investigations, based on covariance analyses of simulated Doppler data and dedicated parameters estimation, are worth of further consideration. It turns out that the J2c−2 effects cannot be responsible of the flyby anomaly in the gravitational field of the Earth. A dedicated spacecraft in a 6678 km × 57103 km polar orbit would experience a geocentric J2c−2 range-rate shift of ≈0.4 mm s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.