Abstract

Abstract Using the insert–restart method developed in this study, tornadogenesis processes associated with the interaction between a supercell and an outflow boundary were investigated. A highly idealized outflow boundary promoted surface vortex intensification in a preconditioned supercell having a strong surface vortex. In particular, a tornado-like vortex was observed in an experiment with a moderate outflow boundary. This intensification was associated with the enhancement of the near-surface horizontal convergence by the outflow boundary. The optimal coldness of the outflow boundary was explained by the balance between the enhancement of the near-surface horizontal convergence and the buoyancy reduction by the outflow boundary. Sensitivity experiments demonstrated that, despite a less favorable environment, a storm with a boundary interaction might reach a similar maximum near-surface vorticity as a storm without a boundary in a more favorable environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.